
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 128.210.146.176

This content was downloaded on 11/12/2013 at 21:53

Please note that terms and conditions apply.

Quantum algorithm and circuit design solving the Poisson equation

View the table of contents for this issue, or go to the journal homepage for more

2013 New J. Phys. 15 013021

(http://iopscience.iop.org/1367-2630/15/1/013021)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/15/1
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

Quantum algorithm and circuit design solving the
Poisson equation

Yudong Cao1, Anargyros Papageorgiou2, Iasonas Petras2,
Joseph Traub2 and Sabre Kais3,4

1 Department of Mechanical Engineering, Purdue University, West Lafayette,
IN 47907, USA
2 Department of Computer Science, Columbia University, New York,
NY 10027, USA
3 Department of Chemistry, Physics, and Computer Science, Birck
Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
E-mail: kais@purdue.edu

New Journal of Physics 15 (2013) 013021 (29pp)
Received 10 July 2012
Published 11 January 2013
Online at http://www.njp.org/
doi:10.1088/1367-2630/15/1/013021

Abstract. The Poisson equation occurs in many areas of science and
engineering. Here we focus on its numerical solution for an equation in d
dimensions. In particular we present a quantum algorithm and a scalable
quantum circuit design which approximates the solution of the Poisson equation
on a grid with error ε. We assume we are given a superposition of function
evaluations of the right-hand side of the Poisson equation. The algorithm
produces a quantum state encoding the solution. The number of quantum
operations and the number of qubits used by the circuit is almost linear in d and
polylog in ε−1. We present quantum circuit modules together with performance
guarantees which can also be used for other problems.

4 Author to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title

of the work, journal citation and DOI.

New Journal of Physics 15 (2013) 013021
1367-2630/13/013021+29$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:kais@purdue.edu
http://www.njp.org/
http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0

2

Contents

1. Introduction 2
2. Overview 3
3. Discretization 5

3.1. One dimension . 5
3.2. Two dimensions . 5
3.3. d dimensions . 7

4. Quantum circuit 8
4.1. Error analysis . 9
4.2. Computation of λ−1 . 11
4.3. Controlled rotation . 13

5. Hamiltonian simulation of the Poisson matrix 15
5.1. One-dimensional case . 15
5.2. Multidimensional case . 19
5.3. Simulation cost . 20

6. Total cost 21
7. Conclusion and future directions 22
Acknowledgments 23
Appendix A 23
Appendix B 23
References 28

1. Introduction

Quantum computers take advantage of quantum mechanics to solve certain computational
problems faster than classical computers. Indeed in some cases the quantum algorithm is
exponentially faster than the best classical algorithm known [1–12].

In this paper we present a quantum algorithm and circuit solving the Poisson equation.
The Poisson equation plays a fundamental role in numerous areas of science and engineering,
such as computational fluid dynamics [13, 14], quantum mechanical continuum solvation [15],
electrostatics [16], the theory of Markov chains [17–19] and is important for density functional
theory and electronic structure calculations [20].

Any classical numerical algorithm solving the Poisson equation with error ε has cost
bounded from below by a function that grows as ε−αd , where d denotes the dimension or the
number of variables, and α > 0 is a smoothness constant [21, 22]. Therefore the cost grows
exponentially in d and the problem suffers from the curse of dimensionality.

We show that the Poisson equation can be solved with error ε using a quantum algorithm
with a number of quantum operations which is almost linear in d and polylog in ε−1. A number
of repetitions proportional to ε−4α guarantees that this algorithm succeeds with probability
arbitrarily close to 1. Hence the quantum algorithm breaks the curse of dimensionality and,
with respect to the dimension of the problem d, enjoys exponential speedup relative to classical
algorithms.

On the other hand, we point out that the output of the algorithm is a quantum state that
encodes the solution on a regular grid rather than a bit string that represents the solution. It can

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

3

be useful if one is interested in computing a function of the solution rather than the solution
itself. In general, the quantum circuit implementing the algorithm can be used as a module in
other quantum algorithms that need the solution of the Poisson equation to achieve their main
task.

In terms of the input of the algorithm, we assume that a quantum state encoding a
superposition of function evaluations of the right-hand side of the Poisson equation is available
to us, and we do not account for the cost of preparing this superposition. In general, preparing
arbitrary quantum states is a very hard problem. Nevertheless, in certain cases one can efficiently
prepare superpositions of function evaluations using the techniques in [23, 24]. We do not deal
with the implementation of such superpositions in this paper.

There are many ways to solve the Poisson equation. We choose to discretize it on a regular
grid in Cartesian coordinates and then solve the resulting system of linear equations. For this
we use the quantum algorithm of [25] for solving linear equation systems. The solution of
differential and partial differential equations (PDEs) is a natural candidate for applying that
algorithm, as already stated in [25]. It has been applied to the solution of differential equations
in [26, 27]. In the case of the Poisson equation that we consider in this paper there is no need,
however, to assume that the matrix is given by an oracle. Indeed, a significant part of our work
deals with the Hamiltonian simulation of the matrix of the Poisson equation. Moreover, it is an
open problem to determine when it is possible to simulate a Hamiltonian with cost polynomial
in the logarithm of the matrix size and the logarithm of ε−1 [28]. Our results show that in the
case of the Hamiltonian for the Poisson equation the answer is positive.

Our analysis of the implementation includes all the numerical details and will be helpful
to researchers working on other problems. All calculations are carried out in fixed precision
arithmetic and we provide accuracy and cost guarantees. We account for the qubits, including
ancilla qubits, needed for the different operations. We provide quantum circuit modules for the
approximation of trigonometric functions, which are needed in the Hamiltonian simulation of
the matrix of the Poisson equation. We show how to obtain a quantum circuit computing the
reciprocal of the eigenvalues using Newton iteration and modular addition and multiplication.
We show how to implement quantum mechanically the inverse trigonometric function needed
for controlled rotations. As we indicated, our results are not limited to the solution of the Poisson
equation but can be used in other quantum algorithms. Our simulation module can be combined
with splitting methods to simulate the Hamiltonian −1+ V , where 1 is the Laplacian and
V is a potential function. The trigonometric approximations can be used by algorithms dealing
with quantum walks. The reciprocal of a real number and a controlled rotation by an angle
obtained by an inverse trigonometric approximation are needed for implementing the linear
system’s algorithm [25] regardless of the matrix involved.

2. Overview

We consider the d-dimensional Poisson equation with Dirichlet boundary conditions.

Definition 1.

−1u(x)= f (x), x ∈ Id := (0, 1)d,

u(x)= 0, x ∈ ∂ Id,
(1)

where f : Id → R is a sufficiently smooth function; e.g. see [21, 29, 30] for details.

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

4

For simplicity we study this equation over the unit cube but a similar analysis applies to
more general domains in Rd . Often one solves this equation by discretizing it and solving the
resulting linear system. A finite difference discretization of the Poisson equation on a grid with
mesh size h, using a (2d + 1) stencil for the Laplacian, yields the linear system

−1hEv = Ef h, (2)

where fh is the vector obtained by sampling the function f on the interior grid points [30–32].
The resulting matrix is symmetric positive definite.

To solve the Poisson equation with error O(ε) both the discretization error and the error on
the solution of the system should be O(ε). This implies that 1h is a matrix of size proportional
to ε−αd

× ε−αd , where α > 0 is a constant that depends on the smoothness of the solution which,
in turn, depends on the smoothness of f [21, 30, 33]. For example, when f has uniformly
bounded partial derivatives up to order four then α = 1/2.

There are different ways for solving this system using classical algorithms. Demmel [31,
table 6.1] lists a number of possibilities. The conjugate gradient algorithm [34] is an example.
Its cost for solving this system with error ε is proportional to

ε−αd√κ log ε−1,

where κ denotes the condition number of 1h . We know κ = ε−2α, independently of d. The
resulting cost is proportional to ε−αd−αlog ε−1. For details about the solution of large linear
systems see [35]. Observe that the factor ε−αd in the cost is the matrix size and its contribution
cannot be overcome. Any direct or iterative classical algorithm solving this system has a cost
of at least ε−αd , since the algorithm must determine all unknowns. So any algorithm solving the
system has a cost exponential in d. In fact a much stronger result holds, namely, the cost of any
classical algorithm solving the Poisson equation in the worst case must be exponential in d [21].

We present a scalable quantum circuit for the solution of (2) and thereby for the
solution of the Poisson equation with error O(ε) that uses a number of qubits proportional
to max{d, log2 ε

−1
}(log2 d + log2 ε

−1)2 and a number of quantum operations proportional to
max{d, log2 ε

−1
}(log2 d + log2 ε

−1)3. It can be shown that log2 d = O(log2 ε
−1) and the above

expressions are simplified to max{d, log2 ε
−1

}(log2 ε
−1)2 qubits and max{d, log2 ε

−1
}(log2 ε

−1)3

quantum operations. A measurement outcome at the final state determines whether the algorithm
has succeeded or not. A number of repetitions proportional to the square of the condition number
yields a success probability arbitrarily close to one.

In section 3 we deal with the discretization of the Poisson equation showing the resulting
matrix. We also describe how the matrix in the multidimensional case can be expressed in terms
of the one-dimensional matrix using Kronecker products. This, as we will see, is important in the
simulation of the Poisson matrix. In section 4 we show the quantum circuit solving the Poisson
equation. We perform the error analysis and show the quantum circuit modules computing the
reciprocal of the eigenvalues and from those the controlled rotation needed at the end of the
linear system’s algorithm [25]. In section 5 we deal with the Hamiltonian simulation of the
matrix of the Poisson equation. The exponential of the multidimensional Hamiltonian is the
d-fold tensor product of the exponential of the one-dimensional Hamiltonian. It is possible
to diagonalize the one-dimensional Hamiltonian using the quantum Fourier transform. Thus it
suffices to approximate the eigenvalues in a way leading to the desired accuracy in the result.
We show the quantum circuit modules performing the eigenvalue approximation and derive the
overall simulation cost. In section 6 we derive the total cost for solving the Poisson equation.
Section 7 is the conclusion. In appendix A we list a number of elementary quantum gates

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

5

and in appendix B we present a series of results concerning the accuracy and the cost of the
approximations we use throughout the paper.

3. Discretization

3.1. One dimension

We start with the one-dimensional case to introduce the matrix Lh that we will use later in
expressing the d-dimensional discretization of the Laplacian, using Kronecker products. We
have

−
d2u(x)

dx2
= f (x), x ∈ (0, 1),

(3)
u(0)= u(1)= 0,

where f is a given smooth function and u is the solution we want to compute. We discretize
the problem with mesh size h = 1/M and we compute an approximate solution v at M + 1 grid
points xi = ih, i = 0, . . . ,M . Let ui = u(xi) and fi = f (xi), i = 0, . . . ,M .

Using finite differences at the grid points to approximate the second derivative (3) becomes

−
d2u(x)

dx2

∣∣∣∣
x=xi

=
2ui − ui−1 − ui+1

h2
− ξi , (4)

where ξi is the truncation error and can be shown to be O(h2
‖

d4u
dx4 ‖∞) if f has the fourth

derivative uniformly bounded by a constant [31].
Ignoring the truncation error, we solve

h−2(−vi−1 + 2vi − vi+1)= fi , 0< i < M. (5)

With boundary conditions v0 = 0 and vM = 0, we have M − 1 equations and M − 1
unknowns v1, . . . , vM−1:

h−2 Lh


v1
...
...

vM−1

 := h−2


2 −1 0

−1
. . .

. . .

. . .
. . . −1

0 −1 2



v1
...
...

vM−1

=


f1
...
...

fM−1

 , (6)

where Lh is the tridiagonal (M − 1)× (M − 1) matrix above; for the properties of this matrix,
including its eigenvalues and eigenvectors see [31, section 6.3].

3.2. Two dimensions

In two dimensions the Poisson equation is

−
∂2u(x, y)

∂x2
−
∂2u(x, y)

∂ y2
= f (x, y), (x, y) ∈ (0, 1)2,

u(x, 0)= u(0, y)= u(x, 1)= u(1, y)= 0, x, y ∈ [0, 1].

(7)

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

6

Figure 1. Discretization of the square domain and notation for indexing the
nodes.

We discretize this equation using a grid with mesh size h = 1/M ; see figure 1. Each node is
indexed u j,k , j, k ∈ {1, 2, . . . ,M} (figures 1(a) and (b)). We approximate the second derivatives
using

∂2u

∂x2
(x, y)≈

u(x − h, y)− 2u(x, y)+ u(x + h, y)

h2
,

∂2u

∂y2
(x, y)≈

u(x, y − h)− 2u(x, y)+ u(x, y + h)

h2
.

Omitting the truncation error, and denoting the discretized Laplacian by −1h we are led
to solve

h−2
(
(−v j−1,k + 2v j,k − v j+1,k)+ (−v j,k−1 + 2v j,k − v j,k+1)

)
= f j,k, (8)

where f j,k = f (jh, kh), j, k = 1, 2, . . . ,M − 1 and v j,k = 0 if j or k ∈ {0,M} i.e. when we
have a point that belongs to the boundary.

Using the fact that the solution is zero at the boundary, we reindex (8) to obtain

h−2(4vi − vi−1 − vi+1 − vi−M+1 − vi+M−1)= fi , i = 1, 2, . . . , (M − 1)2. (9)

Equivalently, we denote this system by

−1hEv = Efh,

where 1h is the discretized Laplacian.
For example, when M = 4, as in figure 1, we have that Ev = [v1, . . . , v9]T. Furthermore (9)

becomes

h−2 A

v1

...

v9

 := h−2

 B −I
−I B −I

−I B


v1

...

v9

=

 f1

...

f9

 , (10)

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

7

where I is the 3 × 3 identity matrix, B is 4 −1
−1 4 −1

−1 4

 .
A is a Hermitian matrix with a particular block structure that is independent of M .

In particular, on a square grid with mesh size h = 1/M we have

−1h = h−2 A (11)

and A can be expressed in terms of Lh as follows:

A =



Lh + 2I −I 0 · · · · · · 0
−I Lh + 2I −I 0 · · · 0

0 −I
. . .

. . . 0
...

... 0
. . .

. . . −I 0
...

... 0 −I Lh + 2I −I
0 0 · · · 0 −I Lh + 2I


(12)

and its size is (M − 1)2 × (M − 1)2 [31].
Recall that Lh is the (M − 1)× (M − 1) matrix shown in (6) and I is the (M − 1)

× (M − 1) identity matrix. Moreover, A can be expressed using Kronecker products as follows:

A = Lh ⊗ I + I ⊗ Lh. (13)

3.3. d dimensions

We now consider the problem in d dimensions. Consider the Laplacian

1=

d∑
k=1

∂2

∂x2
k

.

We discretize 1 on a grid with mesh size h = 1/M using divided differences.
As before, this leads to a system of linear equations

−1hEv = Efh. (14)

Note that −1h = h−2 A is a symmetric positive definite matrix and A is given by

A = Lh ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
d matrices

+I ⊗ Lh ⊗ I ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ Lh,

and has size (M − 1)d × (M − 1)d . Lh is the (M − 1)× (M − 1) matrix shown in (6) and I is
the (M − 1)× (M − 1) identity matrix. See [31] for details.

Observe that the matrix exponential has the form

eiAγ
= eiLhγ ⊗ · · · ⊗ eiLhγ︸ ︷︷ ︸

d matrices

, (15)

for all γ ∈ R, where i =
√

−1. We will use this fact later to derive the quantum circuit solving
the linear system.

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

8

Anc. |0〉 Ry h̃j|1〉+ 1− h̃2j |0〉
Reg.L |0〉 /

INV

|ĥj〉 •

U †

|0〉
b=3�log ε−1� qubits

Reg.C |0〉 / W • FT † |kj〉 / |0〉
n=O(log(E/ε)) qubits

Reg.B fh / HAM-SIM j βj uj b

Figure 2. Overview of the circuit for solving the Poisson equation. Wires with
‘/’ represent registers or groups of qubits. W denotes the Walsh–Hadamard
transform which applies a Hadamard gate on every qubit of the register. FT
represents the quantum Fourier transform. ‘HAM-SIM’ is the Hamiltonian
simulation subroutine that implements the operation e−2π i1h/E . ‘INV’ is the
subroutine that computes λ−1. U † represent uncomputation, which is the adjoint
of all the operations before the controlled Ry rotation.

4. Quantum circuit

We derive a quantum circuit solving the system −1hEv = Efh , where h = 1/M and without loss
of generality we assume that M is a power of two. We obtain a solution of the system with error
O(ε). The steps below are similar to those in [25].

(i) As in [25] assume the right-hand side vector Efh has been prepared quantum mechanically as
a quantum state | fh〉 and stored in the quantum register B. Note | fh〉 =

∑(M−1)d−1
j=0 β j |u j〉,

where |u j〉 denote the eigenstates of −1h and β j are the coefficients.

(ii) Perform phase estimation using the state | fh〉 in the bottom register and the unitary matrix
e−2π i1h/E , where log2 E = dlog de + log(4M2). The number of qubits in the top register of
phase estimation is n = O(log(E/ε)).

(iii) Compute an approximation of the inverse of the eigenvalues λ j . Store the result on a
register L composed of b = 3dlog ε−1

e qubits (figure 2). The approximation error of the
reciprocals is at most ε.

(iv) Introduce an ancilla qubit to the system. Apply a controlled rotation on the ancilla qubit.
The rotation operation is controlled be the register L which stores the reciprocals of
the eigenvalues of −1h (figure 2). The controlled rotation results in

√
1 − (Cd/λ j)2|0〉 +

(Cd/λ j)|1〉, where Cd is a constant.

(v) Uncompute all other qubits on the system except the qubit introduced on the previous item.

(vi) Measure the ancilla qubit. If the outcome is 1, the bottom register of phase estimation
collapses to the state

∑(M−1)d−1
j=0 β jλ j

−1
|u j〉 up to a normalization factor, where |u j〉 denote

the eigenstates of −1h . This is equal to the normalized solution of the system. If the
outcome is 0, the algorithm has failed and we have to repeat it. An alternative would be to
include amplitude amplification to boost the success probability. Amplitude amplification
has been considered in the literature extensively and we do not deal with it here.

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

9

4.1. Error analysis

We carry out the error analysis to obtain the implementation details. For d = 1 the eigenvalues
of the second derivative are

4M2 sin2(jπ/(2M)), j = 1, . . . ,M − 1.

For d > 1, the eigenvalues of −1h are given by sums of the one-dimensional eigenvalues, i.e.
d∑

k=1

[
4M2 sin2(jkπ/(2M))

]
, jk = 1, . . . ,M − 1, k = 1, . . . , d.

We consider them in non-decreasing order and denote them by λ j , j = 1, . . . , (M − 1)d .
Then λ1 = 4d M2sin2(π/(2M)) is the minimum eigenvalue and λ(M−1)d = 4d M2sin2(π(M −

1)/(2M))6 4d M2 is the maximum eigenvalue.
Define E by

log2 E = dlog2 de + log2(4M2). (16)

Then the eigenvalues are bounded from above by E . Recall that we have already assumed
that M is a power of two. Then E = 2dlog2 de4M2

∈ N.
Note that the implementation accuracy of the eigenvalues determines the accuracy of the

system solution.
Our algorithm uses approximations λ̂ j , such that |λ j − λ̂ j |6

17E
2ν 6 ε; see theorem B.2

in appendix B. We use n = log2 E + ν bits to represent each eigenvalue, of which the most
significant log2 E bits hold each integer part and the remaining bits hold each fractional
part. Without loss of generality, we can assume that 2ν � E . More precisely, we consider an
approximation 1̂h of matrix 1h such that the two matrices have the same eigenvectors while
their eigenvalues differ by at most ε.

We use phase estimation with the unitary matrix e−i1̂h t0/E whose eigenvalues are
e2π iλ̂ j t0/(E2π). Setting t0 = 2π we obtain the phases φ j = λ̂ j/E ∈ [0, 1). The initial state of phase
estimation is (figure 2)

|0〉
⊗n

| fh〉 =

(M−1)d∑
j=1

β j |0〉
⊗n

|u j〉,

where |u j〉 is the j th eigenvector of −1h and β j =
〈
u j | fh

〉
, for j = 1, 2, . . . , (M − 1)d . Since

we are using finite bit approximations of the eigenvalues, we have

φ j =
λ̂ j

E
=
λ̂ j 2ν

2n
.

Then φ j 2n is an integer and phase estimation succeeds with probability 1 (see [36,
section 5.2, p 221] for details).

The state prior to the application of the inverse Fourier transform in the phase estimation is
(M−1)d∑

j=1

β j
1

2n/2

2n
−1∑

k=0

e2π iφ j k|k〉|u j〉. (17)

After the application of the inverse Fourier transform to the first n qubits we obtain
(M−1)d∑

j=1

β j |k j〉|u j〉,

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

10

where

k j = 2nφ j = 2nλ̂ j/E = λ̂ j 2
ν
∈ N. (18)

Now we need to compute the reciprocals of the eigenvalues. Observe that

λ1/d = 4M2 sin2(π/(2M))= 4M2(π/(2M)+ O(M−3))2

= π2 + O(M−2) > 5,

where the last inequality holds trivially for sufficiently large M . This implies λ̂ j/Cd > λ̂1/

Cd > 4, where Cd = 2blog2 dc, for sufficiently large M . We obtain k j = 2nλ̂ j/E > λ̂1 > 4Cd .
Append b qubits initialized to |0〉 on the left (Reg. L in figure 2), to obtain

(M−1)d∑
j=1

β j |0〉
⊗b

|k j〉|u j〉.

Note that from (18) k j , λ̂ j and λ̂ j/Cd have the same bit representation. The difference between
the integer k j and the other two numbers is the location of the decimal point; it is located after
the most significant log2 E bit in λ̂ j , and after the most significant log2(E/Cd) bit in λ̂ j/Cd .
Therefore, we can use the labels |k j〉, |λ̂ j〉 and |λ̂ j/Cd〉 interchangeably, and write the state
above as

(M−1)d∑
j=1

β j |0〉
⊗b

|λ̂ j/Cd〉|u j〉.

Now we need to compute h j := h(λ̂ j/Cd)= Cd/λ̂ j . We do this using Newton iteration. We
explain the details in section 4.2. We obtain an approximation ĥ j such that∣∣∣ĥ j − h j

∣∣∣6 ε2
0, (19)

where ε0 = min{ε, E−1
}. We store this approximation in the register composed of the leftmost

b = 3dlog2 ε
−1
0 e qubits.

This leads to the state
(M−1)d∑

j=1

β j |ĥ j〉|λ̂ j/Cd〉|u j〉.

We append, on the left, a qubit initialized at |0〉 (Anc. in figure 2). We get

(M−1)d∑
j=1

β j |0〉|ĥ j〉|λ̂ j/Cd〉|u j〉.

We need to perform the conditional rotation

R|0〉|ω〉 =

(
ω|1〉 +

√
1 −ω2|0〉

)
|ω〉, 0< ω < 1.

For this, we will approximate the first qubit by

ω′
|1〉 +

√
1 − (ω′)2|0〉,

with |ω−ω′
|6 ε2

1, ε1 = min{ε, 1/(4M2)}. We discuss the cost of implementing this
approximation in section 4.3.

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

11

The result of approximating the conditional rotation is to obtain |h̃ j〉, where h̃ j is a
q =2(log2 ε

−1
1) bit number less than 1 satisfying |h̃ j − ĥ j |6 ε

2
1 and, therefore,

|h̃ j − h j |6 ε
2
0 + ε2

1, (20)

for each j = 1, . . . , (M − 1)d .
Ignoring the ancilla qubits needed for implementing the approximation of the conditional

rotation, we have the state
(M−1)d∑

j=1

β j

(
h̃ j |1〉 +

√
1 − h̃2

j |0〉

)
|ĥ j〉|λ̂ j/Cd〉|u j〉.

Uncomputing all the qubits except the leftmost gives the state

|ψ〉 :=
(M−1)d∑

j=1

β j

(
h̃ j |1〉 +

√
1 − h̃2

j |0〉

)
|0〉

⊗b
|0〉

⊗n
|u j〉.

Let P1 = |1〉〈1| ⊗ I be the projection acting non-trivially on the first qubit. The system
−1hEv = Ef h has solution

∑(M−1)d

j=1 β j
1
λ j

|u j〉. We derive the error as follows:

C−1
d

∥∥∥∥∥∥
(M−1)d∑

j=1

b j
Cd

λ j
|1〉|0〉

⊗(b+n)
|u j〉 − P1|ψ〉

∥∥∥∥∥∥
= C−1

d

∥∥∥∥∥∥
(M−1)d∑

j=1

β j
Cd

λ j
|u j〉 −

(M−1)d∑
j=1

β j h̃ j |u j〉

∥∥∥∥∥∥
= C−1

d

∥∥∥∥∥∥
(M−1)d∑

j=1

β j
Cd

λ j
|u j〉 −

(M−1)d∑
j=1

β j(h̃ j − h j + h j)|u j〉

∥∥∥∥∥∥
6

∥∥∥∥∥∥
(M−1)d∑

j=1

β j

(
1

λ j
−

1

λ̂ j

)
|u j〉

∥∥∥∥∥∥+ ε2
0 + ε2

1 6
17E

2ν
+ ε2

0 + ε2
1, (21)

where the second from last inequality is obtained using (20) and the last inequality is due to the
fact that ∣∣∣∣1λ −

1

λ̂

∣∣∣∣6 |λ− λ̂|, λ, λ̂ > 1.

Setting ν = dlog2(17E/ε)e gives error ε(1 + o(1)) and the number of matrix exponentials used
by the algorithm is O(log2(E/ε)). Therefore, if we measure the first qubit of the state |ψ〉 and
the outcome is 1 the state collapses to a normalized solution of the linear system.

4.2. Computation of λ−1

In this part we deal with the computation of the reciprocals of the eigenvalues, which is marked
as the ‘INV’ module in figure 2. For this we use Newton iteration to approximate v−1, v > 1.
We perform s iterative steps and obtain the approximation x̂s . The input and the output of each
iterative step are b bit numbers. All of the calculations in each step are performed in fixed

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

12

|ub−1 = 0〉 •
...

b

|ub′+1 = 0〉 • . . .

|x0〉
|ub′ = 0〉 . . .

b′=b−2−log2 ECd ...

|u0 = 0〉 . . .

|0〉 · · · X |0〉

|vn−1〉 • . . .

|vn−2〉 • . . .

|v〉n
...

|vn′〉 . . . •
n′=n+2−log2 ECd ...

v0 . . .

Figure 3. The quantum circuit computing the initial approximation x̂0 = 2−p

of Newton iteration for approximating v−1, 2p−1 6 v 6 2p. See appendix A for
definitions of the basic gates.

precision arithmetic. The initial approximation is x̂0 = 2−p, 2p−1 < v 6 2p. (We use the notation
x̂i to emphasize that these values have been obtained by truncating a quantity xi to b bits of
accuracy, i = 0, . . . , s.)

Theorem B.1 of appendix B gives the error of Newton iteration which is

|x̂s − v−1
|6 ε2

0 6 ε,

where we have ε0 = min{ε, E−1
}, s = dlog2 log2(2/ε

2
0)e and the number of bits satisfies b >

2dlog2 ε
−1
0 e + O(log2 log2 log2 ε

−1
0).

Therefore, it suffices that the module of the quantum circuit that computes 1/λ j carries
each iterative step with 3dlog2 ε

−1
0 e qubits of accuracy.

The quantum circuit computing the initial approximation x̂0, of the Newton iteration
is given in figure 3. The second register holds |v〉 and is n qubits long, of which the first
log2(E/Cd) qubits represent the integer part of v and the remaining ones its fractional part.
The first register is b qubits long. Recall that λ̂ j/Cd > 4. So input values below 4 do not
correspond to meaningful eigenvalue estimates and we do not need to compute their reciprocals
altogether; they can be ignored. Hence the circuit implements the unitary transformation

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

13

|x̂i〉
−vx2i + 2xi

|x̂i+1〉

v v

Figure 4. Circuit implementing each iterative step of the Newton method.

|0〉
⊗b

|v〉 → |0〉
⊗b

|v〉, if the first log2(E/Cd)− 2 bits of v are all zero. Otherwise, it implements
the initial approximation x̂0 through the transformation |0〉

⊗b
|v〉 → |x̂0〉|v〉.

Each iteration step xi+1 = −vx2
i + 2xi is implemented using a quantum circuit of the form

shown in figure 4 that computes |x̂i〉|v〉 → |x̂i+1〉|v〉. This involves quantum circuits for addition
and multiplication which have been studied in the literature [37].

The register holding |v〉 is n qubits long and the register holding the |x̂i〉 and |x̂i+1〉 is b
qubits long. Note that internally the modules performing the iteration steps may use more than
b qubits, say, double precision, so that the addition and multiplication operations required in the
iteration are carried out exactly and then return the most significant b qubits of the result. The
total number of qubits required for the implementation of each of these modules is O(log ε−1

0)

and the total number of gates is a low degree polynomial in log ε−1
0 .

4.3. Controlled rotation

We now consider the implementation of the controlled rotation

R|0〉|ω〉 =

(
ω|1〉 +

√
1 −ω2|0〉

)
|ω〉, 0< ω < 1.

Assume for a moment that we have obtained |θ〉, a q qubit state, corresponding to an angle θ
such that sin θ approximates ω. Then we can use controlled rotations Ry about the y-axis to
implement R. We consider the binary representation of θ and have

θ = θ1 . . . θq =

q∑
j=1

θ j 2
− j , θ j ∈ {0, 1}.

Then

Ry(2θ)= e−iθY
=

(√
1 − sin2 θ − sin θ

sin θ
√

1 − sin2 θ

)

=

q∏
j=1

e−iY θ j/2 j
=

q∏
j=1

R
θ j
y

(
21− j

)
,

where Y is the Pauli Y operator and θ ∈ [0, π/2]. The detailed circuit is shown in figure 5.
We now turn to the algorithm that calculates |θ〉 from |ω〉. Since ω corresponds to the

reciprocal of an approximate eigenvalue of the discretized Laplacian, we know that sin−1(ω)

belongs to the first quadrant and sin−1(ω)=�(1/M2). Therefore, we can find an angle θ such
that |sin(θ)−ω|6 ε2

1, ε1 = min{1/(4M2), ε}, using bisection and an approximation of the sine
function.

In appendix B we show the error in approximating the sine function using fixed precision
arithmetic. In section 5 we show the details of the resulting quantum algorithm computing the

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

14

|0〉 Ry(1) Ry(1/2) . . . Ry(1/2q−1)

|θ1〉 . . .

|θ2〉 . . .

...

θb . . .

Figure 5. Circuit for executing the controlled Ry rotation. See appendix A for
definitions of basic gates.

approximation to the sine function. These results, with a minor adjustment in the number of bits
needed can be used here. We will not deal with the details of the quantum algorithm for the
sine function in this section since we present them in section 5 that deals with the simulation of
Poisson’s matrix. We will only describe the steps of the algorithm and its cost.

Algorithm

(i) Take as an initial approximation of θ the value π/4.

(ii) Approximate the sin(θ) with error ε2
1/2 using our algorithm for the sine function (details

in section 5 and appendix B). Let sθ denote this approximation.

(iii) If sθ < ω− ε2
1/2, set θ to be the midpoint of the right subinterval.

(iv) If sθ > ω + ε2
1/2, set θ to be the midpoint of the left subinterval.

(v) Repeat the steps 2–4 dlog2 ε
−2
1 e + 1 times.

An evaluation at the midpoint of an interval yields a value that satisfies either the condition
of step 3, or that of step 4, or |sθ −ω|6 ε2

1/2. If at any time both the conditions of steps 3
and 4 are false then θ will not change its value until the end. Then, at the end, we have
|sin(θ)−ω|6 |sin(θ)− sθ | + |sθ −ω|6 ε2

1, since the error in computing the sine is ε2
1/2. On the

other hand, if θ is updated until the very end of the algorithm the final value of theta also satisfies
|sin(θ)−w|6 ε2

1, because in the final interval we have |sin(θ)−ω|6 |θ − sin−1(ω)|6 ε2
1.

In a way similar to that of propositions 1 and 2 of appendix B we carry out the steps of the
algorithm in q bit fixed precision arithmetic, q = max{2ν + 9, 13 + ν + 2 log2 M} and sufficiently
large ν to satisfy the accuracy requirements. (The last expression for q is slightly different form
that in proposition 2 because it accounts for the fact that in the case we are dealing with here
the angle is �(1/M2).) This gives us an approximation to the sine with error 2−(ν−1). We set

ν = dlog2 ε
−2
1 e + 1.

Thus ν and q are both 2(log2 ε1).
The algorithm for the sine function is based on an approximation of the exponential

function using repeated squaring. Each square requires O(q2) quantum operations and O(q)

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

15

qubits. This is repeated ν times before the approximation to the sine is obtained. Thus the cost
of one bisection step requires O(νq2) quantum operations and O(νq) qubits. So, in terms of
ε1, the total cost of bisection is proportional to (log2 ε

−1
1)4 quantum operations and (log2 ε

−1
1)3

qubits.

5. Hamiltonian simulation of the Poisson matrix

In this section we deal with the implementation of the ‘HAM-SIM’ module (figure 2) which
effectively applies e−i1̂h t0 onto register B. In our case the eigenvectors of the discretized
Laplacian are known and we use approximations of the eigenvalues. From (11) and (15) we
have

e−i1hγ = eih−2 Lhγ ⊗ · · · ⊗ eih−2 Lhγ︸ ︷︷ ︸
d matrices

. (22)

Thus it suffices to implement eih−2 Lhγ , for certain γ ∈ R, c = 2p · 2t/E , t = 0, 1, . . . , log2 E − 1
that are required in phase estimation. This can be accomplished by considering the spectral
decomposition S3S of the matrix Lh , where S is the matrix of the sine transform [31, 40].
Then S can be implemented using the quantum Fourier transform. We will implement an
approximation of 3.

We remark that the quantum circuits presented here can be used in the simulation of the
Hamiltonian −1+ V using splitting formulas. For results concerning Hamiltonian simulation
using splitting formulas see [9, 28, 41].

5.1. One-dimensional case

We start with the implementation of eih−2 Lhγ , γ = 2π2t/E , E = 4M2 when d = 1 and
t = 0, 1, . . . , n − 1, where n is the number of qubits in register C ; see (17). The form of
Lh is shown in (6) and is positive definite. It is a Toeplitz matrix and it is known that this
type of matrix can be diagonalized via the sine transform S [42]. We have Lh = S3S, where
3 is an (M − 1)× (M − 1) diagonal matrix containing the eigenvalues 4sin2(jπ/(2M)),
j = 1, . . . ,M − 1, of Lh and S = {Si, j}i, j=1,2,...,M−1 is the sine transform where

Si, j =

√
2
M sin (π i j

M), i, j=1, . . ., M − 1. Thus

eih−2 Lhγ = S eih−23γ S. (23)

The relationship between the sine and cosine transforms and the Fourier transform can be found
in [40, theorem 3.10].

In particular, using the notation in [40], we have

T †
M F2M TM = CM+1 ⊕ (−iSM−1)=

(
CM+1 0

0 −iSM−1

)
, (24)

where CM+1, SM−1 denote the cosine and sine transforms, and the subscripts M − 1 and M + 1
emphasize the size of the respective matrix. F2M is the 2M × 2M matrix of the Fourier

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

16

transform. The matrix TM has size 2M × 2M and is given by (25)

TM =



1
1

√
2

i
√

2
. . .

. . .

1
√

2

i
√

2
1

1
√

2
−

i
√

2
...

...

1
√

2
−

i
√

2



. (25)

The quantum circuits for implementing the unitary transformation TM is discussed in [38].
The action of TM can be described by [38]

TM |0x〉 =
1

√
2
|0x〉 +

1
√

2
|1x ′

〉,

TM |1x〉 =
i

√
2
|0x〉 −

i
√

2
|1x ′

〉,

(26)

where i2
= −1, x is an n-bit number ranging 16 x < 2n and x ′ denotes its complement of 2 i.e.

x ′
= 2n

− x . The basic idea of implementing TM is to separate its operation into an operator D,
which ignores the complement of 2 in TM , and a controlled permutation π , which transforms
the state |bx〉 to |bx ′

〉 only if b is 1. Therefore the action of D and π can be written as

D|0x〉 =
1

√
2
|0x〉 +

1
√

2
|1x〉,

D|1x〉 =
i

√
2
|0x〉 −

i
√

2
|1x〉,

π |0x〉 = |0x〉,

π |1x〉 = |1x ′
〉.

(27)

Clearly, TM = Dπ and the overall circuit for implementing operation TM is shown in figure 8.
By (24) the sine transform S can be implemented by cascading the quantum circuits in

figure 8 with the circuit for the Fourier transform [36]. An ancilla bit is added to register b. It is
kept in the state |1〉 in order to select the lower-right block(

a 0
0 −iSM−1

)
(28)

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

17

|1〉
eih

−2Lhγ

|j1〉 / /

|1〉
eih

−2Lhγ

|j2〉 / /

Figure 6. Quantum circuit for implementing e−i1hγ , γ ∈ R for the two-
dimensional discrete Poisson equation. The subroutine of eih−2 Lhγ is shown in
figure 7. The registers holding | j1〉, | j2〉 are m qubits each.

|1〉
T †M FT2M TM eih

−2Λγ T †M FT2M TM eih
−2Lhγ

/ / / / / / / /
︸ ︷︷ ︸

= /

SM−1

Figure 7. Quantum circuit for implementing eih−2 Lhγ , γ ∈ R, where Lh is
the matrix in (6). SM−1 represents the sine transform matrix of size (M − 1)
× (M − 1), M = 2m . This circuit acts on m + 1 qubits.

from the unitary operation T †
M F2M TM (24), a ∈ C. Considering the state | fh〉, that corresponds

to the right-hand side of (6), and for bi = 〈i | fh〉 we have

(0, b1, b2, . . . , bM−1︸ ︷︷ ︸
values on the

(M − 1) nodes

), (29)

then the element a in equation (28) has no effect, and the circuit in figure 6 is equivalent to
applying (SM−1 e2π i32t/E SM−1) onto the (M − 1) elements of | fh〉. This is also equivalent to
simulating the Hamiltonian e2π ih−232t/E with the state | fh〉 stored in register b.

We implement e2π ih−23̂2t/E where 3̂= {λ̂ j} j=1,...,M−1 is a diagonal matrix approximating
3= {λ j} j=1,...,M−1.

We obtain each λ̂ j , j = 1, . . . ,M − 1 by the following algorithm. The general idea is to
approximate sin x = =(eix)= =((eix/r)r) with W r where W = 1 − ix/r + x2/r 2 is the Taylor
expansion of eix/r up to the second order term. W r is computed efficiently in fixed point
arithmetic using repeated squaring. The detailed steps are the following.

Eigenvalue simulation algorithm (ESA)

(i) Let r = 2ν+7 where ν is positive integer which is related to the accuracy of the result.
The inputs and the outputs of the modules below are s = max{2ν + 9, 11 + ν + log2 M} bit
numbers. Internally the modules may carry out calculations in higher precision O(s), but

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

18

|1〉

︸ ︷︷ ︸︸ ︷︷ ︸

B B† • •
X

Pm

|1〉
TM...

...
= / /

X

D π

(a)

B = H S

X · · ·

Pm

• X · · ·

• • X · · ·

· · · · · · · · · . . . =

• • • · · · X

X

(b)

Figure 8. Quantum circuit for implementing TM in equations (24) and (25).
In (b), Pm denotes the map |x〉 → |x + 1 mod 2n

〉 on n qubits. Its implementation
is described in [39]. See appendix A for the definitions of basic gates. (a) Generic
circuit for TM = Dπ , for details refer to [38]. (b) Implementation of B and Pm

gates in (a).

the results are returned using s bits. This value of s follows from the error estimates in
proposition B.2.

(ii) We perform the transformation

| j〉|0〉
⊗s

→ | j〉 |ŷ j = x̂ j/r〉︸ ︷︷ ︸
s qubits

,

where x̂ j is the s bit truncation of x j =
π j
2M . Note that y j = x j/r ∈ (0, 1) and ŷ j is the s bit

truncation of y j . Recall that r > 2 and 2M are powers of 2. Calculations are to be performed

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

19

in fixed precision arithmetic, so division does not actually need to be performed. All one
needs to do is multiply j by π with O(s) bits of accuracy, keeping in track the position of
the decimal point and then take the most significant s bits of the result.

(iii) We compute the real and imaginary parts of the complex number Ŵ1 by truncating, if
necessary, the respective parts of Ŵ0 = 1 − ŷ2 + iŷ to s bits of accuracy; see (B.7) in
proposition B.1. This is expressed by the transformation

|ŷ j〉|0〉
⊗s

|0〉
⊗s

→ |ŷ j〉|<(Ŵ1)〉|=(Ŵ1)〉.

Note that since |ŷ j〉 is s qubits long, Ŵ0 can be computed exactly using double precision
and ancilla qubits and the final result can be returned in s qubits.

Complex numbers are implemented using two registers, holding the real and imaginary
parts. Complex arithmetic is performed by computing the real and imaginary parts of the
result.

(iv) We compute Ŵr approximating Ŵ r
1 using repeated squaring. Each step of this procedure is

accomplished by the transformation

|<(Ŵ2 j)〉|=(Ŵ2 j)〉|0〉
⊗s

|0〉
⊗s

→ |<(Ŵ2 j)〉|=(Ŵ2 j)〉|<(Ŵ2 j+1)〉|=(Ŵ2 j+1)〉,

which describes the steps in (B.7). The registers holding real and imaginary parts of the
numbers are s qubits long.

(v) =(Ŵr) approximates sin(π j/(2M)) with error 2−(ν−1). Hence =
2(Ŵr) approximates the

sin2(π j/(2M)). We compute the square of =(Ŵr) exactly and multiply it by 4M2 (this
involves only shifting). We keep the most significant ν + log2(4M2) bits of the result, which
we denote by ` j . This means that the log2(4M2) bits of the binary string representing
` j compose the integer part and the last ν bits compose the fractional parts of the
approximation to λ j . Then

|λ j − ` j |6 17 × 2−νM2.

For details of the error estimate see proposition B.2. When d = 1, n (the number of qubits
in register C) and ν are related by n = ν + log2(4M2). Moreover, in the one-dimensional
case λ̂ j = ` j .

(vi) Let k j be the binary string representing ` j . For a fixed t , we implement the transformation

|k j〉︸︷︷︸
n qubits

|0〉
⊗n

→ |k j〉 |k j 2
t
〉︸ ︷︷ ︸

n qubits

. (30)

This is accomplished using CNOTs with the circuit shown in figure 9, since t 6 n the total
number of quantum operations and qubits required to implement the circuit for all the
values of t is O(n2).

(vii) Finally, we use phase kickback (see e.g. [43]) to obtain e2π iφ j 2t
from the |k j 2t

〉 state where
φ j is the phase corresponding to the eigenvalue ` j that approximates λ j ; see (18).

5.2. Multidimensional case

To implement e−i1hγ , γ = 2π2t/E , E defined in (16) and t = 0, . . . , n − 1 we use

e−i1hγ = eih−2 Lhγ ⊗ · · · ⊗ eih−2 Lhγ︸ ︷︷ ︸
d matrices

. (31)

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

20

n− 1
...

n− t •
n− t− 1 •

...
0 •

|0〉n−1
|0〉n−2

...|0〉t−1

...0 0

Figure 9. Quantum circuit for implementing the transformation in equation (30).

Therefore the quantum circuit implementing e−i1hγ in d dimensions is obtained by the
replication and parallel application of the circuit simulating eih−2 Lhγ . For example, when d = 2
we have the circuit in figure 6. The register B of figure 2 contains dm qubits, m = log2 M and
its initial state is assumed to have the form

(0, . . . , 0︸ ︷︷ ︸
Md−(M−1)d

, b1, b2, . . . , b(M−1)d)︸ ︷︷ ︸
values on the nodes of

(M − 1)(×d) grid

, (32)

where bi = 〈i | fh〉. This way we select the SM−1 block in T †
M F2M TM in (24) in each circuit for

eih−2 Lhγ . Recall that | fh〉 corresponds to the right-hand side of (14).
The eigenvalues in the d-dimensional case are given as sums of the one-dimensional

eigenvalues. We do not need to form the sums explicitly for the simulation of −1h; they
are computed by the tensor products. The difference between the d-dimensional and one-
dimensional cases is that the register C in figure 2 has dlog2 de additional qubits; i.e n =

dlog2 de + log2 4M2 + ν. Accordingly, we generate the one-dimensional approximations to the
eigenvalues using steps 1–5 of the eigenvalue estimation algorithm of the previous section.
Then we append dlog2 de qubits initialized to |0〉

⊗dlog2 de to the left of the register holding the
|` j〉 and carry out the remaining two steps, 6 and 7, with n = dlog2 de + log2 4M2 + ν. The error
in the approximate eigenvalues is equal to 17M2d/2ν; see theorem B.2.

5.3. Simulation cost

Simulating the sine and cosine transforms (24) requires O(m2), m = log2 M quantum operations
and O(m) qubits [38]. The diagonal eigenvalue matrix of the one-dimensional case (23) is
simulated by ESA. Its steps 1–3 and 5 require O(s2) quantum operations and O(s) qubits.
In step 4 repeated squaring is performed ν + 7 times. Each repetition or step of the procedure
requires O(s2) quantum operations and O(s) qubits. The total cost of step 4 is proportional
to ν · O(s2) quantum operations and ν · O(s) qubits, accounting for any ancilla qubits used in

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

21

repeated squaring. Step 6 requires O(n + t) quantum operations and qubits for fixed t . Step 7
requires O(n2) quantum operations, due to the Fourier transform, and O(n) qubits.

Using theorem B.2, and requiring error ε in the approximation of the eigenvalues, we have

17E

2ν
6 ε,

ν =

⌈
log2

17E

ε

⌉
,

i.e. ν =2(log2 d + m + log2 ε
−1). We also have n =2(ν) and s =2(n).

We derive the simulation cost taking the following facts into account.

• Steps 1–5 deal with the approximation of the eigenvalues. These computations are not
repeated for every t = 0, . . . , n − 1. The total cost of these steps is O(n3) quantum
operations and O(n2) qubits.

• The total cost of step 6, resulting from all the values of t , is O(n2) quantum operations and
qubits.

• The total cost of step 7, that applies phase kickback for all values of t , does not exceed
O(n3) quantum operations and O(n2) qubits.

Therefore the total cost to simulate eih−2 Lhγ , γ = 2π2t/E , for all t = 0, . . . , n − 1, is O(n3)

quantum operations and O(n2) qubits. From (22) we conclude that the cost to simulate Poisson’s
matrix for the d-dimensional problem is d · O(n3) quantum operations and d · O(n2) qubits.

Finally, we remark that the dominant component of the cost is the one resulting from the
approximation of the eigenvalues (i.e. the cost of steps 1–5).

6. Total cost

We now consider the total cost for solving the Poisson equation (1). Discretizing the second
derivative operator on a grid with mesh size h = 1/M results in a system of linear equations,
where the coefficient matrix is (M − 1)d × (M − 1)d , i.e. exponential in the dimension d > 1.
Solving this system using classical algorithms has a cost that grows at least as fast as the number
of unknowns (M − 1)d . For the case d = 2, [31, table 6.1] summarizes the cost of direct and
iterative classical algorithms solving this system.

For simulating Poisson’s matrix we need d O(n3) quantum operations and d O(n2) qubits,
where n = O(log2 d + m + log2 ε

−1) and m = log2 M . To this we add the cost for computing
the reciprocal of the eigenvalues which is O((log2 ε

−1
0)2 log2 log2 ε

−1
0) quantum operations

and O((log2 ε
−1
0)log2 log2 ε

−1
0) qubits, accounting for the O(log2 log2 ε

−1
0) Newton steps, ε0 =

min{ε, E−1
}. Finally, we add the cost of the conditional rotation which is proportional to

(log2 ε
−1
1)4 quantum operations and (log2 ε

−1
1)3 qubits, ε1 = min{1/(4M)2, ε}.

From the above we conclude that the quantum circuit implementing the algorithm requires
an order of d O(n3)+ (log2 ε

−1
1)4 quantum operations and d O(n2)+ (log2 ε

−1
1)3 qubits.

The relation between the matrix size and the accuracy is very important in assessing
the performance of the quantum algorithm solving a linear system, since its cost depends

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

22

on both of these quantities [25]. In particular, for the Poisson equation we have ignored, so
far, the effect of the discretization error of the Laplacian 1. If the grid is too coarse the
discretization error will exceed the desired accuracy. If the grid is too fine, the matrix will
be unnecessarily large. Thus the mesh size and, therefore, the matrix size should depend on
ε, i.e. M = M(ε). This dependence is determined by the smoothness of the solution u, which,
in turn, depends on the smoothness of the right-hand side function f . For example, if f has
uniformly bounded partial derivatives up to order four, then the discretization error is O(h2)

and we set M = ε−1/2; see [30, 31] for details. In general, we have M = ε−α, where α > 0 is a
parameter depending on the smoothness of the solution. This yields n = O(log2 d + log2 ε

−1),
since m = log2 M = α log2 ε

−1. The resulting number of the quantum operations for the circuit
is proportional to

max{d, log2 ε
−1

}(log2 d + log2 ε
−1)3,

and the number of qubits is proportional to

max{d, log2 ε
−1

}(log2 d + log2 ε
−1)2.

It can be shown that log2 d = O(log2 ε
−1) and the number of quantum operations and qubits

become proportional to

max{d, log2 ε
−1

}(log2 ε
−1)3

and

max{d, log2 ε
−1

}(log2 ε
−1)2,

respectively.
Observe that the condition number of the matrix is proportional to ε−2α and is independent

of d. Therefore a number of repetitions proportional to ε−4α leads to a success probability
arbitrarily close to one, regardless of the value of d. This follows because repeating an algorithm
many times increases its probability of succeeding at least according to the Chernoff bounds
[36, box 3.4, p 154]. In contrast to this, the cost of any deterministic classical algorithm solving
the Poisson equation is exponential in d . Indeed, for error ε the cost is bounded from below by
a quantity proportional to ε−d/r where r is a smoothness parameter [21].

7. Conclusion and future directions

We present a quantum algorithm and a circuit for approximating the solution of the Poisson
equation in d dimensions. The algorithm breaks the curse of dimensionality and in terms of d
yields an exponential speedup relative to classical algorithms. The quantum circuit is scalable
and has been obtained by exploiting the structure of the Hamiltonian for the Poisson equation
to diagonalize it efficiently. In addition, we provide quantum circuit modules for computing
the reciprocal of eigenvalues and trigonometric approximations. These modules can be used in
other problems as well.

The successful development of the quantum Poisson solver opens up entirely new horizons
in solving structured systems on quantum computers, such as those involving Toeplitz matrices.
Hamiltonian simulation techniques [9, 28, 41] can also be combined with our algorithm to
extend its applicability to PDEs, signal processing, time series analysis and other areas.

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

23

Acknowledgments

SK and YC would like to thank the NSF CCI Center, ‘Quantum Information for Quantum
Chemistry (QIQC)’, award number CHE-1037992 and Army Research Office (ARO) for partial
support. AP, IP and JFT thank the NSF for financial support.

Appendix A

In this paper, X , Y and Z are Pauli matrices σx , σy and σz. I represents the identity matrix. H
is the Hadamard gate and W , in figure 2, represents H⊗n where n is the number of qubits in the
register. The matrix representations of other quantum gates used are the following:

V †
=

1

2

(
1 − i 1 + i
1 + i 1 − i

)
, Rzz(θ)= eiθ

(
1 0
0 1

)
, (A.1)

Rx(θ)=


cos

(
θ

2

)
i sin

(
θ

2

)
i sin

(
θ

2

)
cos

(
θ

2

)
 , Ry(θ)=


cos

(
θ

2

)
−sin

(
θ

2

)
sin

(
θ

2

)
cos

(
θ

2

)
 ,(A.2)

S =

(
1 0
0 i

)
, T =

(
1 0
0 ei π4

)
, Rz(θ)=

(
1 0
0 eiθ

)
. (A.3)

Appendix B

Theorem B.1. Consider the approximation x̂s to v−1, v > 1, using s steps of Newton iteration,
with initial approximation x̂0 = 2−p, 2p−1 < v 6 2p. Assume that each step takes b bit numbers
as inputs and produces b bit outputs and that all internal calculations are carried out in fixed
precision arithmetic. Then the error is

|x̂s − v−1
|6 εN + s2−b,

where εN denotes the desired error of Newton iteration without considering the truncation error,
εN > 2−2s

. The truncation error is given by the second term and s > dlog2 log2 ε
−1
N e, b > p.

Proof. Consider the function g(x)= 1/x − v, x > 0, where g(1/v)= 0. The Newton iteration
for approximating the zero of g is given by

xs+1 = ϕ(xs)= 2xs − vx2
s , s = 0, 1,

The error es = |xs − 1/v| satisfies es+1 = ve2
s . Unfolding the recurrence we get

es 6 (ve0)
2s
.

Let x0 = 2−p. Now consider the lowest power of 2 that is greater than or equal to v, i.e.
2p−1 < v 6 2p. Clearly p > 1 since v > 1 and ve0 < 1/2. For error εN we have 2−2s

6 εN , which
implies s > dlog2 log2 ε

−1
N e.

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

24

The derivative of the iteration function is decreasing and we have |ϕ′
|6 2(1 − ax0)6 1.

We will implement the iteration using fixed precision arithmetic. We first calculate the round
off error. We have

x̂0 = x0,

x̂1 = ϕ(x̂0)+ ξ1,

x̂2 = ϕ(x̂1)+ ξ2,

...

x̂s = ϕ(x̂s−1)+ ξs,

where the ξi denotes truncation error at the respective steps. Thus

x̂s − xs = ϕ(x̂s−1)+ ξs −ϕ(xs−1),

and using the fact |ϕ′
|6 1 we obtain

|x̂s − xs|6 |x̂s−1 − xs−1| + |ξs|6
s∑

i=1

|ξi |6 s2−b,

assuming that we truncate the intermediate results to b bits of accuracy. ut

Lemma B.1. Let x ∈ [π/(2M), π/2) and W = 1 + i x
r −

x2

r2 . Then∣∣eix
− W r

∣∣6 27/r.

Proof. eix
= (eix/r)r = (W + E(x/r))r , where for y = x/r , E(y)=

∑
k>3

(iy)k

k! and∣∣∣∣∣∑
k>3

(iy)k

k!

∣∣∣∣∣ 6∑
k>3

|y|
k

k!
= |y|

3
∑
k>3

|y|
k−3

k!
= |y|

3
∑
k>0

k!

(k + 3)!︸ ︷︷ ︸
1

(k+1)(k+2)(k+3) 6
1
6

|y|
k

k!

6
|y|

3

6
e|y| < |y|

3, (B.1)

where the last inequality holds for |y| = |
x
r |< 1, which is true due to our assumptions. Hence∣∣E(x

r)
∣∣6 |

x
r |

3 for |x |< r .
We then turn our attention to the powers of W ,

|W | =

∣∣∣∣1 + i
x

r
−

x2

r 2

∣∣∣∣6 1 +
x

r
+

x2

r 2
. (B.2)

For all k ∈ {1, 2, . . . , r} we have

|W |
k 6

(
1 +

x

r
+

x2

r 2

)k

6 e
(

x
r + x2

r2

)
k
= e

|x |

r ke
|x |

2

r2 k 6 e|x | e
|x |

2

r 6 e2x 6 eπ (B.3)

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

25

where we have used the fact that k
r < 1. The second inequality is due to (1 + a)k 6 eka, a ∈ R,

k ∈ Z+. Indeed,

(1 + a)k =

k∑
l=0

(
k
l

)
ak−l

=

k∑
l=0

k!

l!(k − l)!
ak−l

=

k∑
l=0

k!

l!(k − l)!

(ka)k−l

kk−l

=

k∑
l=0

k(k − 1) · · · (l + 1)

kk−l︸ ︷︷ ︸
61

l · · · 1

l!︸ ︷︷ ︸
61

(ka)k−l

(k − l)!
6

k∑
l=0

(ka)k−l

(k − l)!
=

k∑
l=0

(ka)l

l!
6 eka.

(B.4)

Finally we look at the approximation error. Note that

eix
=

(
W + E

(x

r

))r
=

r∑
k=0

(
r
k

)
W k

[
E
(x

r

)]r−k

= W r +

(
r
l

)
W r−1 E

(x

r

)
+ · · · +

(
r
r

)
W 0

[
E
(x

r

)]r

︸ ︷︷ ︸
error in r-th power

.
(B.5)

Consider the kth term in the error series. According to (B.1) we have(
r
k

)
|W |

r−k
∣∣∣E (x

r

)∣∣∣k 6 C

(
r
k

) ∣∣∣x
r

∣∣∣3k
= C

r !

k!(r − k)!

|x |
3k

r 3k

= C
r(r − 1) · · · (r − k + 1)

k!

1

r k

|x |
3k

r 2k

6 C
|x |

k

k!

|x |
2k

r 2k
6
π

2
C

(
|x |

r

)2k

6
π

2
eπ
(

|x |

r

)2k

,

where C = eπ and we use Stirling’s formula k! =
√

2πkk+1/2 exp
(
−k + θ

12k

)
, θ ∈ (0, 1), [44,

p 257] to obtain |x |
k/k!6 5−k x k ek 6 1 for k > 5, since |x |6 π

2 . So the total approximation
error is bounded by

|eix
− W r

|6
r∑

k=1

(
r
k

)
|W |

r−k
∣∣∣x
r

∣∣∣3k
6
π

2
eπr

(
|x |

r

)2

6 eπ
(π

2

)3 1

r
6 27

×
1

r
. (B.6)

ut

Lemma B.2. Under the assumptions of lemma B.1

|sin x − = (W r)|6 27/r

and

|cos x − < (W r)|6 27/r.

The proof is trivial and we omit it.

Proposition B.1. Let r = 2ν+7 for ν > 1 and consider the procedure computing W r , as defined
in lemma B.1 using repeated squaring. Assume each step computing a square carries out the

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

26

calculation using fixed precision arithmetic and that its inputs and outputs are s bit numbers.
Let Ŵr be the final result. Then the error is∣∣∣W r

− Ŵr

∣∣∣6 2ν+9

2s
,

for s > 11 + ν + log2 M, where 1/M is the mesh size in the discretization of the Poisson equation.

Proof. We are interested in estimating sin(jπ/(2M)), for j = 1, 2, . . . ,M − 1. We consider x ∈

[π/(2M), π/2). We approximate eix and from this sin x , which is the imaginary part of eix . Let
y =

x
r 6 2−7. We truncate it to s bits of accuracy to obtain ŷ. Note that W = 1 − y2 + iy satisfies

|W |
2
= 1 − y2 + y4 < 1. Let Ŵ0 = 1 − ŷ2 + iŷ, y − ŷ 6 2−s . Then |Ŵ0|

2 6 |W |
2 + 4y2−s < 1, for

s > 11 + ν + log2 M . This value of s follows by solving

4y2−s 6 y2/2,

which ensures that Ŵ 2
0 6 1. In addition,∣∣∣< (Ŵ0 − W

)∣∣∣6 2y2−s + 2−2s

and ∣∣∣= (Ŵ0 − W
)∣∣∣6 2−s.

Define the sequence of approximations

Ŵ1 = Ŵ0 + e1,

Ŵ2 = Ŵ 2
1 + e2,

...

Ŵr =

(
Ŵr/2

)2
+ er , (B.7)

where r = 2ν+7 and the error terms e1, e2, . . . , er are complex numbers denoting that the real
and imaginary parts of the results are truncated to s bits of accuracy.

Observe that if |Ŵ2 j−1|< 1 then |Ŵ2 j |< 1, since |Ŵ2 j−1|
2 < 1 and truncation of real and

imaginary parts does not increase the magnitude of a complex number. Since |Ŵ0|< 1, all the
numbers in the sequence (B.7) belong to the unit disc S in the complex plane.

Let z = a + bi. Then the function that computes z2 can be understood as a vector valued
function of two variables, h : S → S, such that h(a, b)= (a2

− b2, 2ab). The Jacobian of h is

J = 2

(
a −b
b a

)
, (a, b) ∈ S

and its Euclidean norm satisfies ‖ J ‖6 2, since a2 + b2 6 1. Using this bound we obtain

|W r
− Ŵr |6 |W r

− (Ŵr/2)
2
| + |er |

6 2{2|W r/4
− Ŵr/4| + |er/4|} + |er |

6 2ν+7
|W − Ŵ1| + 2ν+7−1

|e2| + · · · + 20
|e2ν+7|

= 2ν+7
∣∣∣W − Ŵ0

∣∣∣+ 2ν+7
|e1| + · · · + |e2ν+7|

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

27

6 2ν+7
∣∣∣W − Ŵ0

∣∣∣+

√
2

2s

ν+7∑
j=0

2ν+7− j

6 2ν+7

√(
2y

1

2s
+

1

22s

)2

+
1

22s
+

√
2

2s

(
2ν+8

− 1
)

6 4
2ν+7

2s
, (B.8)

where the last inequality follows since 2y + 2−s 6 2−6 + 2−11. ut

Proposition B.2. Under the assumptions of proposition B.1 we approximate sin x by =(Ŵr),
x ∈ [π/(2M), π/2), with s = max{2ν + 9, 11 + ν + log2 M} bits and r = 2ν+7. Then the error is

| sin x − =(Ŵr)|6 2−(ν−1).

Moreover, we note the following.

• Denoting by Ŵr, j the approximations to sin(π j/(2M)), j = 1, 2, . . . ,M − 1, we have the
following error bound:∣∣∣∣4M2 sin2(jπ/(2M))− 4M2

(
=(Ŵr, j)

)2
∣∣∣∣6 2−(ν−4)M2,

j = 1, 2, . . . ,M − 1, for the eigenvalues of the matrix h−2Lh that approximates the second
derivative operator, using mesh size h = 1/M.

• Letting ` j be the truncation of 4M2(=(Ŵr, j))
2 to ν bits after the decimal point (the length

of ` j is ν + log2(4M2) bits, and ν is sufficiently large to satisfy the accuracy requirements)
we have ∣∣4M2 sin2(jπ/(2M))− ` j

∣∣6 17 × 2−νM2,

for j = 1, 2, . . . ,M − 1.

Proof. We have∣∣∣eix
− Ŵr

∣∣∣ 6 ∣∣eix
− W r

∣∣+
∣∣∣W r

− Ŵr

∣∣∣
6

27

2ν+7
+

2ν+9

2s

= 2−ν +
2ν+9

2s
=

1

2ν−1
, (B.9)

for s = max{2ν + 9, 11 + ν + log2 M}, which completes the proof of the first part. The proof of
the second and third parts follows immediately. ut

Theorem B.2. Consider the eigenvalues

λ j1,..., jd = 4M2
d∏

k=1

sin2

(
jkπ

2M

)
,

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://www.njp.org/

28

jk = 1, 2, . . . ,M − 1, k = 1, 2, . . . , d of −1h , h = 1/M. Let

λ̂ j1,..., jd =

d∑
k=1

` jk ,

where ` jk are defined in proposition B.2, jk = 1, 2, . . . ,M − 1, k = 1, 2, . . . , d. Then

|λ j1,... jd − λ̂ j1,..., jd |6
17M2d

2ν
.

The proof follows from proposition B.2 and the fact that the d-dimensional eigenvalues are
sums of the one-dimensional eigenvalues.

References

[1] Abrams D S and Lloyd S 1997 Simulation of many-body Fermi systems on a quantum computer Phys. Rev.
Lett. 79 2586–9

[2] Abrams D S and Lloyd S 1999 Quantum algorithm providing exponential speed increase for finding
eigenvalues and eigenvectors Phys. Rev. Lett. 83 5162–5

[3] Aspuru-Guzik A, Dutoi A D, Love P J and Head-Gordon M 2005 Simulated quantum computation of
molecular energies Science 379 1704–7

[4] Dowling J P 2006 To compute or not to compute Nature 439 919
[5] Lidar D and Wang H 1999 Calculating the thermal rate constant with exponential speed-up on a quantum

computer Phys. Rev. E 59 2429–38
[6] Lloyd S 1996 Universal quantum simulators Science 273 1073–8
[7] Papageorgiou A, Petras I, Traub J F and Zhang C A fast algorithm for approximating the ground state energy

on a quantum computer Math. Comput. to appear
[8] Shor P W 1994 Algorithms for quantum computation: discrete logarithm and factoring Proc. 35th Annual

Symp. Foundations of Computer Science ed S Goldwasser (New York: IEEE Computer Society Press)
pp 124–34

[9] Papageorgiou A and Zhang C 2012 On the efficiency of quantum algorithms for hamiltonian simulation
Quantum Inform. Process. 11 541–61

[10] Wang H, Ashhab S and Nori F 2012 Quantum algorithm for obtaining the energy spectrum of a physical
system Phys. Rev. A 85 062304

[11] Wang H, Kais S, Aspuru-Guzik A and Hoffmann M R 2008 Quantum algorithm for obtaining the energy
spectrum of molecular systems Phys. Chem. Chem. Phys. 10 5388–93

[12] You J Q and Nori F 2011 Atomic physics and quantum optics using superconducting circuits Nature 474 589
[13] Batchelor G K 2000 An Introduction to Fluid Dynamics (Cambridge: Cambridge University Press)
[14] Fletcher C A J 1991 Computational Techniques for Fluid Dynamics vol 1, 2nd edn (Berlin: Springer)
[15] Tomasi J, Mennucci B and Cammi R 2005 Quantum mechanical continuum solvation models Chem. Rev.

105 2999–3094
[16] Griffiths D J 1999 Introduction to Electrodynamics (Upper Saddle River, NJ: Prentice-Hall)
[17] Meyn S P 2007 Control Techniques for Complex Networks (Cambridge: Cambridge University Press)
[18] Meyn S P and Tweedie R L 2009 Markov Chains and Stochastic Stability (Cambridge: Cambridge University

Press)
[19] Asmussen S and Glynn P W 2007 Stochastic Simulation: Algorithms and Analysis (Stochastic Modelling and

Applied Probability vol 57) (Berlin: Springer) pp 103–5
[20] Engel E and Dreizler R M 2011 Density Functional Theory: An Advanced Course (New York: Springer)
[21] Werschulz A G 1991 The Computational Complexity of Differential and Integral Equations: An Information-

Based Approach (New York: Oxford University Press)

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.79.2586
http://dx.doi.org/10.1103/PhysRevLett.83.5162
http://dx.doi.org/10.1126/science.1113479
http://dx.doi.org/10.1038/439919a
http://dx.doi.org/10.1103/PhysRevE.59.2429
http://dx.doi.org/10.1126/science.273.5278.1073
http://dx.doi.org/10.1007/s11128-011-0263-9
http://dx.doi.org/10.1103/PhysRevA.85.062304
http://dx.doi.org/10.1039/b804804e
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1021/cr9904009
http://www.njp.org/

29

[22] Ritter K and Wasilkowski G W 1996 On the average case complexity of solving poisson equations (Lectures
in Applied Mathematics vol 32) ed J Renegar, M Shub and S Smale (University Park, PA: The Pennsylvania
State University) pp 677–87

[23] Grover L and Rudolph T 2002 Creating superpositions that correspond to efficiently integrable probability
distributions arXiv:quant-ph/0208112v1

[24] Soklakov A N and Schack R 2006 Efficient state preparation for a register of quantum bits Phys. Rev. A
73 012307

[25] Harrow A W, Hassidim A and Lloyd S 2009 Quantum algorithm for linear systems of equations Phys. Rev.
Lett. 15 150502

[26] Berry D W 2010 Quantum algorithms for solving linear differential equations arXiv:1010.2745v1 [quant-ph]
[27] Leyton S K and Osborne T J 2008 A quantum algorithm to solve nonlinear differential equations

arXiv:0812.4423 [quant-ph]
[28] Childs A M and Wiebe N 2012 Hamiltonian simulation using linear combinations of unitary operations

arXiv:1202.5822 [quant-ph]
[29] Evans L C 1998 Partial Differential Equations (Providence, RI: American Mathematical Society)
[30] Forsythe G E and Wasow W R 2004 Finite-Difference Methods for Partial Differential Equations (New York:

Dover)
[31] Demmel J W 1997 Applied Numerical Linear Algebra (Philadelphia, PA: SIAM)
[32] LeVeque R J 2007 Finite Difference Methods for Ordinary and Partial Differential Equations (Philadelphia,

PA: SIAM)
[33] Bramble J H and Hubbard B E 1962 On the formulation of finite difference analogues of the Dirichlet problem

for Poisson’s equation Numer. Math. 4 313–27
[34] Saad Y 2003 Iterative Methods for Sparse Linear Systems (Philadelphia, PA: SIAM)
[35] Traub J F and Woźniakowski H 1984 On the optimal solution of large linear systems J. ACM 31 545–59
[36] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge

University Press)
[37] Vedral V, Barenco A and Ekert A 1996 Quantum networks for elementary arithmetic operations Phys. Rev. A

54 147–53
[38] Klappenecker A and Roetteler M 2001 Discrete cosine transforms on quantum computers arXiv:quant-

ph/0111038
[39] Pueschel M, Roetteler M and Beth T 1998 Fast quantum fourier transforms for a class of non-Abelian groups

arXiv:quant-ph/9807064v1
[40] Wickerhauser M V 1994 Adapted Wavelet Analysis from Theory to Software (Wellesley, MA: A K Peters)
[41] Berry D W, Ahokas G, Cleve R and Sanders B S 2007 Efficient quantum algorithms for simulating sparse

Hamiltonians Commun. Math. Phys. 270 359–71
[42] di Benedetto F 1997 Preconditioning of block Toeplitz matrices by sine transforms SIAM J. Sci. Comput.

18 499–515
[43] Jordan S P 2005 Fast quantum algorithm for numerical gradient estimation Phys. Rev. Lett. 95 050501
[44] Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions (New York: Dover)

New Journal of Physics 15 (2013) 013021 (http://www.njp.org/)

http://arxiv.org/abs/quant-ph/0208112v1
http://dx.doi.org/10.1103/PhysRevA.73.012307
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://arxiv.org/abs/1010.2745v1
http://arxiv.org/abs/0812.4423
http://arxiv.org/abs/1202.5822
http://dx.doi.org/10.1007/BF01386325
http://dx.doi.org/10.1145/828.830
http://dx.doi.org/10.1103/PhysRevA.54.147
http://arxiv.org/abs/quant-ph/0111038
http://arxiv.org/abs/quant-ph/0111038
http://arxiv.org/abs/quant-ph/9807064v1
http://dx.doi.org/10.1007/s00220-006-0150-x
http://dx.doi.org/10.1137/S1064827595258335
http://dx.doi.org/10.1103/PhysRevLett.95.050501
http://www.njp.org/

	1. Introduction
	2. Overview
	3. Discretization
	3.1. One dimension
	3.2. Two dimensions
	3.3. d dimensions

	4. Quantum circuit
	4.1. Error analysis
	4.2. Computation of -1
	4.3. Controlled rotation

	5. Hamiltonian simulation of the Poisson matrix
	5.1. One-dimensional case
	5.2. Multidimensional case
	5.3. Simulation cost

	6. Total cost
	7. Conclusion and future directions
	Acknowledgments
	Appendix A
	Appendix B
	References

